

 Below is the readme for amd, explaining what it is and how to use it.
More detailed documentation can be found in the sidebar.

average-minimum-distance: isometrically invariant crystal fingerprints

[image: PyPI]
 [https://pypi.org/project/average-minimum-distance/][image: Status]
 [https://pypi.org/project/average-minimum-distance/][image: Read the Docs]
 [https://average-minimum-distance.readthedocs.io][image: Build Status]
 [https://app.travis-ci.com/github/dwiddo/average-minimum-distance][image: MATCH Paper]
 [https://doi.org/10.46793/match.87-3.529W][image: CC-0 license]
 [https://creativecommons.org/licenses/by-nc-sa/4.0/]Implements fingerprints (isometry invariants) of crystal structures based on geometry: average minimum distances (AMD) and pointwise distance distributions (PDD).

	PyPI project: https://pypi.org/project/average-minimum-distance

	Documentation: https://average-minimum-distance.readthedocs.io

	Source code: https://github.com/dwiddo/average-minimum-distance

	References (jump to bib references):

	Average minimum distances of periodic point sets - foundational invariants for mapping periodic crystals. MATCH Communications in Mathematical and in Computer Chemistry, 87(3):529-559 (2022). https://doi.org/10.46793/match.87-3.529W

	Pointwise distance distributions of periodic point sets. arXiv preprint arXiv:2108.04798 (2021). https://arxiv.org/abs/2108.04798

What’s amd?

The typical representation of a crystal as a motif and cell is ambiguous, as there are many ways to define the same crystal. This package implements new isometric invariants: average minimum distances (AMD) and pointwise distance distributions (PDD), which always take the same value for any two (isometrically) identical input crystals. They do this in a continuous way, so similar crystals have a small distance between their invariants.

Brief description of AMD and PDD

The pointwise distance distribution (PDD) records the environment of each atom in a unit cell by listing the distances from each atom to neighbouring atoms in order, with some extra steps to ensure independence of cell and motif. A PDD is a collection of lists with attached weights (a matrix). Two PDDs are compared by finding an optimal matching between the two sets of lists while respecting the weights (Earth Mover’s distance [https://doi.org/10.46793/match.87-3.529W]), and when the crystals are geometrically identical (regardless of choice of motif and cell) there is always a perfect matching resulting in a distance of zero.

The average minimum distance (AMD) averages the PDD over atoms in a unit cell to make a vector, which is also the same for any choice of cell and motif. Since AMDs are just vectors, comparing by AMD is much faster than PDD, though AMD contains less information in theory.

Both AMD and PDD have a parameter k, the number of nearest neighbours to consider for each atom, which is the length of the AMD vector or the number of columns in the PDD (plus an extra column for weights of rows).

Getting started

Use pip to install average-minimum-distance:

pip install average-minimum-distance

Then import average-minimum-distance with import amd.

amd.compare() compares sets of crystals by AMD or PDD in one line, e.g. by PDD with k = 100:

import amd
df = amd.compare('crystals.cif', by='PDD', k=100)

A pandas DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html] is returned of the distance matrix with names of crystals in rows and columns. It can also take two paths and compare crystals in one file with the other, for example

df = amd.compare('crystals_1.cif', 'crystals_2.cif' by='AMD', k=100)

Either first or second argument can be lists of cif paths (or file objects) which are combined in the final distance matrix.

amd.compare() reads crystals and calculates their AMD or PDD, but throws them away. It may be faster to save these to a file (e.g. pickle), see sections below on how to separately read, calculate and compare.

If csd-python-api is installed, the compare function can also accept one or more CSD refcodes or other file formats instead of cifs (pass reader='ccdc').

Choosing a value of k

The parameter k of the invariants is the number of nearest neighbour atoms considered for each atom in the unit cell, e.g. k = 5 looks at the 5 nearest neighbours of each atom. Two crystals with the same unit molecule will have a small AMD/PDD distance for small enough k. A larger k will mean the environments of atoms in one crystal must line up with those in the other up to a larger radius to have a small AMD/PDD distance. Very large k does not mean better comparisons, as the invariants start to converge to depend only on density.

Reading crystals from a file, calculating the AMDs and PDDs

This code reads a .cif with amd.CifReader and computes the AMDs (k = 100):

import amd
reader = amd.CifReader('path/to/file.cif')
amds = [amd.AMD(crystal, 100) for crystal in reader] # calc AMDs

Note: CifReader accepts optional arguments, e.g. for removing hydrogen and handling disorder. See the documentation for details.

To calculate PDDs, just replace amd.AMD with amd.PDD.

If csd-python-api is installed, crystals can be read directly from your local copy of the CSD with amd.CSDReader, which accepts a list of refcodes. CifReader can accept file formats other than cif by passing reader='ccdc'.

Comparing by AMD or PDD

amd.AMD_pdist and amd.PDD_pdist take a list of invariants and compares them pairwise, returning a condensed distance matrix like SciPy’s pdist function.

read and calculate AMDs and PDDs (k=100)
crystals = list(amd.CifReader('path/to/file.cif'))
amds = [amd.AMD(crystal, 100) for crystal in reader]
pdds = [amd.PDD(crystal, 100) for crystal in reader]

amd_cdm = amd.AMD_pdist(amds) # compare a list of AMDs pairwise
pdd_cdm = amd.PDD_pdist(pdds) # compare a list of PDDs pairwise

Use SciPy's squareform for a symmetric 2D distance matrix
from scipy.distance.spatial import squareform
amd_dm = squareform(amd_cdm)

Note: if you want both AMDs and PDDs like above, it’s faster to compute the PDDs first and use ``amd.PDD_to_AMD()`` rather than computing both from scratch.

The default metric for comparison is chebyshev (L-infinity), though it can be changed to anything accepted by SciPy’s pdist, e.g. euclidean.

If you have two sets of crystals and want to compare all crystals in one to the other, use amd.AMD_cdist or amd.PDD_cdist.

set1 = amd.CifReader('set1.cif')
set2 = amd.CifReader('set2.cif')
amds1 = [amd.AMD(crystal, 100) for crystal in set1]
amds2 = [amd.AMD(crystal, 100) for crystal in set2]

dm[i][j] = distance(amds1[i], amds2[j])
dm = amd.AMD_cdist(amds)

Example: PDD-based dendrogram

This example compares some crystals in a cif by PDD (k = 100) and plots a single linkage dendrogram:

import amd
import matplotlib.pyplot as plt
from scipy.cluster import hierarchy

crystals = list(amd.CifReader('crystals.cif'))
names = [crystal.name for crystal in crystals]
pdds = [amd.PDD(crystal, 100) for crystal in crystals]
cdm = amd.PDD_pdist(pdds)
Z = hierarchy.linkage(cdm, 'single')
dn = hierarchy.dendrogram(Z, labels=names)
plt.show()

Example: Finding n nearest neighbours in one set from another

This example finds the 10 nearest PDD-neighbours in set 2 for every crystal in set 1.

import numpy as np
import amd

n = 10
df = amd.compare('set1.cif', 'set2.cif', k=100)
dm = df.values

Uses np.argpartiton (partial argsort) and np.take_along_axis to find
nearest neighbours of each item in set1. Works for any distance matrix.
nn_inds = np.array([np.argpartition(row, n)[:n] for row in dm])
nn_dists = np.take_along_axis(dm, nn_inds, axis=-1)
sorted_inds = np.argsort(nn_dists, axis=-1)
nn_inds = np.take_along_axis(nn_inds, sorted_inds, axis=-1)
nn_dists = np.take_along_axis(nn_dists, sorted_inds, axis=-1)

for i in range(len(set1)):
 print('neighbours of', df.index[i])
 for j in range(n):
 print('neighbour', j+1, df.columns[nn_inds[i][j]], 'dist:', nn_dists[i][j])

Cite us [bookmark: citeus]

Use the following bib references to cite AMD or PDD.

Average minimum distances of periodic point sets - foundational invariants for mapping periodic crystals. MATCH Communications in Mathematical and in Computer Chemistry, 87(3), 529-559 (2022). https://doi.org/10.46793/match.87-3.529W.

@article{10.46793/match.87-3.529W,
 title = {Average Minimum Distances of periodic point sets - foundational invariants for mapping periodic crystals},
 author = {Widdowson, Daniel and Mosca, Marco M and Pulido, Angeles and Kurlin, Vitaliy and Cooper, Andrew I},
 journal = {MATCH Communications in Mathematical and in Computer Chemistry},
 doi = {10.46793/match.87-3.529W},
 volume = {87},
 number = {3},
 pages = {529-559},
 year = {2022}
}

Pointwise distance distributions of periodic point sets. arXiv preprint arXiv:2108.04798 (2021). https://arxiv.org/abs/2108.04798.

@misc{arXiv:2108.04798,
 author = {Widdowson, Daniel and Kurlin, Vitaliy},
 title = {Pointwise distance distributions of periodic point sets},
 year = {2021},
 eprint = {arXiv:2108.04798},
}

Indices and tables

	Index

	Module Index

	Search Page

Quick reference

amd.compare() is one function for reading crystals and comparing them by their AMD or PDD.
For example, to compare all crystals in a cif by PDD with k = 100:

import amd
df = amd.compare('crystals.cif', by='PDD', k=100)

A pandas DataFrame is returned, a table of the distance matrix with names with rows and
columns indexed by name. The function can also take a second path to a cif, and compare
all crystals in one with all in the other. To compare by AMD, just change by='AMD'.

If csd-python-api is installed, the compare function can also accept CSD refcodes instead of cif files.

Compare options

The compare function reads crystals, computes their invariants and compares them in one function for
convinience. It accepts many keyword arguments for reading, calculating and comparing, all listed in one place below
for convinience.

Reader options

	reader (default ase) controls the backend package used to parse the file. To use csd-python-api change to ccdc. The ccdc reader should be able to read any format accepted by ccdc.io.EntryReader [https://downloads.ccdc.cam.ac.uk/documentation/API/modules/io_api.html#ccdc.io.EntryReader], though only .cifs have been tested.

	remove_hydrogens (default False) removes Hydrogen atoms from the structure.

	disorder (default skip) controls how disordered structures are handled. The default skips any crystal with disorder, since disorder conflicts with the periodic set model. Alternatively, ordered_sites removes sites with disorder and all_sites includes all sites regardless.

	heaviest_component (default False, csd-python-api only) removes all but the heaviest molecule in the asymmetric unit, intended for removing solvents.

	show_warnings (default True) chooses whether to print warnings during reading, e.g. from disordered structures or crystals with missing data.

	families (default False, csd-python-api only) chooses whether to read refcodes or refcode families.

PDD options

	collapse (default True) chooses whether to collpase rows of PDDs which are similar enough (elementwise).

	collapse_tol (default 1e-4) is the tolerance for collapsing PDD rows into one. The merged row is the average of those collapsed.

Comparison options

	metric (default chebyshev) chooses the metric used to compare AMDs or PDD rows. See SciPy’s cdist/pdist for a list of accepted metrics.

	n_jobs (new in 1.2.3, default None) is the number of cores to use for multiprocessing (passed to joblib.Parallel). Pass -1 to use the maximum.

	verbose (changed in 1.2.3, default 0) controls the verbosity level, increasing with larger numbers. This is passed to joblib.Parallel, see their documentation for details.

	low_memory (default False, by=’AMD’ only) uses an alternative slower algorithm that keeps memory use low for much larger inputs. Only metric='chebyshev' is accepted with low_memory.

Description of AMD/PDD

The AMD of a crystal is an infinite sequence calculated from inter-atomic distances in the crystal.
In contrast, the PDD is a matrix which can have arbitrarily many columns.
In practice, both are calculated up to some chosen number k of entries/columns.

The kth AMD value of a periodic set is the average distance to the kth nearest neighbour over atoms in a unit cell.
That is, to find the AMD for a periodic set up to k, list (in order) distances to the nearest k neighbours (in the infinite crystal)
for every atom in a unit cell take the average, giving a vector length k.

The PDD is related to AMD but contains more information as it avoids the averaging step.
Like AMD, list distances to the nearest k neighbours in order for each atom in a unit cell.
Collect these lists into one matrix with a row for each atom. Then order the rows of the matrix lexicographically.
If any rows are not unique, keep only one and give each a weight proportional to how many copies there are.
The result is the kth PDD of the periodic set. In practice, the weights are kept in the first column of the matrix.

A much more detailed description can be found in the papers on AMD and PDD:

	Average minimum distances of periodic point sets - foundational invariants for mapping periodic crystals. MATCH Communications in Mathematical and in Computer Chemistry, 87(3):529-559 (2022). https://doi.org/10.46793/match.87-3.529W

	Pointwise distance distributions of periodic point sets. arXiv preprint arXiv:2108.04798 (2021). https://arxiv.org/abs/2108.04798

Comparing by AMD/PDD

AMDs are just vectors which can be compared with any metric, as long as k (length of the AMD) is the same.
The default metric used in this package is L-infinity (aka Chebyshev),
since it does not so much accumulate differences in distances across many neighbours.
PDDs are matrices with weighted rows; the appropriate metric to compare them is the Earth mover’s distance (aka Wasserstein metric),
which itself needs a metric to compare two PDD rows (without their weights), where L-infinity is again our default.

Reading cifs

If you have a .cif file, use amd.CifReader to extract the crystals:

create list of crystals in a .cif
crystals = list(amd.CifReader('file.cif'))

Can also accept path to a directory, reading all files inside
crystals = list(amd.CifReader('path/to/folder'))

loop over the reader and get AMDs (k=100) of crystals
amds = []
for p_set in amd.CifReader('file.cif'):
 amds.append(amd.AMD(p_set, 100))

The CifReader returns periodicset.PeriodicSet objects representing the crystals,
which can be passed to amd.AMD() or amd.PDD() to calculate their invariants.
The PeriodicSet has attributes .name, .motif, .cell, .types (atomic numbers),
as well as .asymmetric_unit and .wyckoff_multiplicities for use in calculations. When the path
is to a folder, it will also have an attribute .filename.

CifReader can accept other file formats, if you have csd-python-api installed. This should work
if you pass reader='ccdc' to the reader, though formats other than .cif have not been tested.

Reading options

amd.io.CifReader accepts the following parameters (many shared by io.CSDReader):

amd.CifReader(
 'file.cif', # path to file or folder
 reader='ase', # backend cif parser
 remove_hydrogens=False, # remove Hydrogens
 disorder='skip', # handling disorder
 heaviest_component=False, # just keep the heaviest component in asym unit
 show_warnings=True # silence warnings
)

	reader controls the backend package used to parse the file. The default is ase; to use csd-python-api change to ccdc. The ccdc reader should be able to read any format accepted by ccdc.io.EntryReader [https://downloads.ccdc.cam.ac.uk/documentation/API/modules/io_api.html#ccdc.io.EntryReader], though only .cifs have been tested.

	remove_hydrogens removes Hydrogen atoms from the structure.

	disorder controls how disordered structures are handled. The default is to skip any crystal with disorder, since disorder conflicts with the periodic set model. To read disordered structures anyway, choose either ordered_sites to remove sites with disorder or all_sites include all sites regardless.

	heaviest_component csd-python-api only. Removes all but the heaviest molecule in the asymmetric unit, intended for removing solvents.

	show_warnings will not print warnings during reading if False, e.g. from disordered structures or crystals with missing data.

See the references io.CifReader or periodicset.PeriodicSet for more.

Reading from the CSD

If csd-python-api is installed, amd can use it to read crystals directly from the CSD.

amd.io.CSDReader accepts a list of CSD refcode(s) and yields the crystals.
If None or 'CSD' are passed instead of refcodes, it reads the whole CSD:

Put crystals with these refcodes in a list
refcodes = ['DEBXIT01', 'DEBXIT05', 'HXACAN01']
structures = list(amd.CSDReader(refcodes))

Read refcode families (any whose refcode starts with strings in the list)
refcodes = ['ACSALA', 'HXACAN']
structures = list(amd.CSDReader(refcodes, families=True))

Create a generic reader, read crystals 'on demand' with CSDReader.entry()
reader = amd.CSDReader()
debxit01 = reader.entry('DEBXIT01')

looping over this generic reader will yield all CSD entries
for periodic_set in reader:
 ...

Make list of AMDs for crystals in these families
refcodes = ['ACSALA', 'HXACAN']
amds = []
for structure in amd.CSDReader(refcodes, families=True):
 amds.append(amd.AMD(structure, 100))

The CSDReader returns periodicset.PeriodicSet objects representing the crystals,
which can be passed to amd.AMD() or amd.PDD() to calculate their invariants.
The PeriodicSet has attributes .name, .motif, .cell, .types (atomic numbers),
as well as .asymmetric_unit and .wyckoff_multiplicities for use in calculations.

Reading options

The amd.io.CSDReader accepts the following parameters (many shared by io.CifReader):

amd.CSDReader(
 refcodes=None, # list of refcodes (or families) or 'CSD'
 families=False, # interpret refcodes as families (include if refcode starts with)
 remove_hydrogens=False, # remove Hydrogens
 disorder='skip', # handling disorder
 heaviest_component=False # just keep the heaviest component in asym unit
)

	As described above, families chooses whether to read refcodes or refcode families.

	remove_hydrogens removes Hydrogen atoms from the structure.

	disorder controls how disordered structures are handled. The default is to skip any crystal with disorder, since disorder conflicts with the periodic set model. To read disordered structures anyway, choose either ordered_sites to remove sites with disorder or all_sites include all sites regardless.

	heaviest_component takes the heaviest connected molecule in the motif, intended for removing solvents.

See the references amd.io.CSDReader or amd.periodicset.PeriodicSet for more.

Using AMDs

Calculation

The average minimum distance (AMD) of a crystal is given by amd.AMD().
It accepts a crystal and an integer k, returning \(\text{AMD}_k\) as a 1D NumPy array.

If you have a .cif file, use amd.io.CifReader to read the crystals
(see Reading cifs). If you have CSD refcodes and csd-python-api is installed,
use amd.io.CSDReader (see Reading from the CSD).

get AMDs of crystals in a .cif
crystals = list(amd.CifReader('file.cif'))
amds = [amd.AMD(crystal, 100) for crystal in crystals]

get AMDs of crystals in DEBXIT family
csd_reader = amd.CSDReader('DEBXIT', families=True)
amds = [amd.AMD(crystal, 100) for crystal in csd_reader]

You can also give the coordinates of motif points and unit cell as a tuple of numpy
arrays, in Cartesian form:

AMD (k=10) of 3D cubic lattice
motif = np.array([[0,0,0]])
cell = np.identity(3)
cubic_lattice = (motif, cell)
cubic_amd = amd.AMD(cubic_lattice, 10)

Each AMD returned by amd.AMD(crystal, k) is a vector length k.

Note: The AMD of a crystal can be calculated from its PDD. If both are needed,
you can calculate the PDD and then use amd.calculate.PDD_to_AMD().

Comparison

AMDs are just vectors that can be compared with any metric, but the amd.compare module has functions to compare AMDs for you.

compare.AMD_pdist() and compare.AMD_cdist() are like scipy’s functions
pdist and cdist. pdist takes a set and compares all elements pairwise,
whereas cdist takes two sets and compares elements in one with the other.
cdist returns a 2D distance matrix, but pdist returns a condensed distance matrix
(see scipy’s pdist [https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.pdist.html]).
The default metric for AMD comparisons is l-infinity, but it can be changed to any metric
accepted by scipy’s pdist/cdist.

compare crystals in file1.cif with those in file2.cif by AMD, k=100
amds1 = [amd.AMD(crystal, 100) for crystal in amd.CifReader('file1.cif')]
amds2 = [amd.AMD(crystal, 100) for crystal in amd.CifReader('file2.cif')]
distance_matrix = amd.AMD_cdist(amds1, amds2)

compare everything in file1.cif with each other (using l-inf)
condensed_dm = amd.AMD_pdist(amds1)

Comparison options

amd.AMD_cdist and amd.AMD_pdist share the following optional arguments:

	metric chooses the metric used for comparison, see scipy’s cdist/pdist for a list of accepted metrics.

	low_memory (default False) uses an alternative slower algorithm that keeps memory use low for much larger inputs. Currently only metric='chebyshev' is accepted with low_memory.

Using PDDs

Calculation

The pointwise distance distribution (PDD) of a crystal is given by amd.PDD().
It accepts a crystal and an integer k, returning the \(\text{PDD}_k\) as a 2D
NumPy array with k+1 columns, the weights of each row being in the first column.

If you have a .cif file, use amd.io.CifReader to read the crystals
(see Reading cifs). If you have CSD refcodes and csd-python-api is installed,
use amd.io.CSDReader (see Reading from the CSD).

get PDDs of crystals in a .cif
reader = amd.CifReader('file.cif')
pdds = [amd.PDD(crystal, 100) for crystal in reader]

get PDDs of DEBXIT01 and DEBXIT02 from the CSD
crystals = list(amd.CSDReader(['DEBXIT01', 'DEBXIT02']))
pdds = [amd.PDD(crystal, 50) for crystal in crystals]

You can also give the coordinates of motif points and unit cell as a tuple of numpy
arrays, in Cartesian form:

PDD (k=10) of 3D cubic lattice
motif = np.array([[0,0,0]])
cell = np.identity(3)
cubic_lattice = (motif, cell)
cubic_pdd = amd.PDD(cubic_lattice, 10)

The object returned by amd.PDD is a NumPy array with k+1 columns.

Calculation options

amd.PDD accepts a few optional arguments (not relevant to amd.AMD):

amd.PDD(periodic_set, k, lexsort=True, collapse=True, collapse_tol=1e-4, return_row_groups=False)

lexsort lexicograpgically orders the rows of the PDD, and collapse merges rows
if all elements of rows are within collapse_tol. The definition of PDD requires both
in order to satisfy invariance (that two isometric sets have equal PDDs). However,
earth mover’s distance does not depend on the order of rows, so lexsort=False makes no
difference to comparisons. Setting collapse=False will not change the earth mover’s
distances either, but comparisons can take longer if rows aren’t collapsed.

Sometimes it’s useful to know which rows of the PDD came from which motif points in the input.
Setting return_row_groups=True makes the function return a tuple (pdd, groups), where
groups[i] contains the indices of the point(s) corresponding to pdd[i]. Note that these
indices are for the asymmetric unit of the set, whose indices in periodic_set.motif are
accessible through periodic_set.asymmetric_unit.

Comparison

The Earth mover’s distance [https://en.wikipedia.org/wiki/Earth_mover%27s_distance] is
the appropriate metric to compare PDDs. The amd.compare module contains functions
for these comparisons.

compare.PDD_pdist() and compare.PDD_cdist() are like scipy’s functions
pdist and cdist. pdist takes one set and compares all elements pairwise,
whereas cdist takes two sets and compares elements in one with the other.
cdist returns a 2D distance matrix, but pdist returns a condensed distance matrix
(see scipy’s pdist function [https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.pdist.html]).

compare crystals in file1.cif with those in file2.cif by PDD, k=100
pdds1 = [amd.PDD(crystal, 100) for crystal in amd.CifReader('file1.cif')]
pdds2 = [amd.PDD(crystal, 100) for crystal in amd.CifReader('file2.cif')]
distance_matrix = amd.PDD_cdist(pdds1, pdds2)

compare everything in file1.cif with each other
condensed_dm = amd.PDD_pdist(pdds1)

You can compare one PDD with another with compare.EMD():

compare DEBXIT01 and DEBXIT02 by PDD, k=100
pdds = [amd.PDD(crystal, 100) for crystal in amd.CSDReader(['DEBXIT01', 'DEBXIT02'])]
distance = amd.EMD(pdds[0], pdds[1])

compare.EMD(), compare.PDD_pdist() and compare.PDD_cdist() all accept
an optional argument metric, which can be anything accepted by scipy’s pdist/cdist functions [https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.pdist.html].
The metric used to compare PDD matrices is always Earth mover’s distance, but this still requires another metric
between the rows of PDDs (so there’s a different Earth mover’s distance for each choice of metric).

Comparison options and multiprocessing

amd.PDD_cdist and amd.PDD_pdist share the following optional arguments:

	metric (default chebyshev) chooses the metric used to compare PDD rows, as explained above. See scipy’s cdist/pdist for a list of accepted metrics.

	n_jobs (new in 1.2.3, default None) is the number of cores to use for multiprocessing (passed to joblib.Parallel). Pass -1 to use the maximum.

	verbose (changed in 1.2.3, default 0) controls the verbosity level, increasing with larger numbers. This is passed to joblib.Parallel, see their documentation for details.

amd.calculate module

Functions for calculating the average minimum distance (AMD) and
point-wise distance distribution (PDD) isometric invariants of
periodic crystals and finite sets.

	
amd.calculate.AMD(periodic_set: Union[amd.periodicset.PeriodicSet, Tuple[numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]]], k: int) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	The AMD of a periodic set (crystal) up to k.

	Parameters

	
	periodic_set (periodicset.PeriodicSet or tuple of numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] s) – A periodic set represented by a periodicset.PeriodicSet or
by a tuple (motif, cell) with coordinates in Cartesian form and a square unit cell.

	k (int) – Length of the AMD returned; the number of neighbours considered for each atom
in the unit cell to make the AMD.

	Returns

	A numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] shape (k,), the AMD of periodic_set up to k.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

Examples

Make list of AMDs with k = 100 for crystals in data.cif:

amds = []
for periodic_set in amd.CifReader('data.cif'):
 amds.append(amd.AMD(periodic_set, 100))

Make list of AMDs with k = 10 for crystals in these CSD refcode families:

amds = []
for periodic_set in amd.CSDReader(['HXACAN', 'ACSALA'], families=True):
 amds.append(amd.AMD(periodic_set, 10))

Manually pass a periodic set as a tuple (motif, cell):

simple cubic lattice
motif = np.array([[0,0,0]])
cell = np.array([[1,0,0], [0,1,0], [0,0,1]])
cubic_amd = amd.AMD((motif, cell), 100)

	
amd.calculate.PDD(periodic_set: Union[amd.periodicset.PeriodicSet, Tuple[numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]]], k: int, lexsort: bool = True, collapse: bool = True, collapse_tol: float = 0.0001, return_row_groups: bool = False) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	The PDD of a periodic set (crystal) up to k.

	Parameters

	
	periodic_set (periodicset.PeriodicSet tuple of numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] s) – A periodic set represented by a periodicset.PeriodicSet or
by a tuple (motif, cell) with coordinates in Cartesian form and a square unit cell.

	k (int) – The returned PDD has k+1 columns, an additional first column for row weights.
k is the number of neighbours considered for each atom in the unit cell
to make the PDD.

	lexsort (bool, default True) – Lexicographically order the rows. Default True.

	collapse (bool, default True) – Collapse repeated rows (within the tolerance collapse_tol). Default True.

	collapse_tol (float, default 1e-4) – If two rows have all elements closer than collapse_tol, they are merged and
weights are given to rows in proportion to the number of times they appeared.
Default is 0.0001.

	return_row_groups (bool, default False) – Return data about which PDD rows correspond to which points.
If True, a tuple is returned (pdd, groups) where groups[i]
contains the indices of the point(s) corresponding to pdd[i].
Note that these indices are for the asymmetric unit of the set, whose
indices in periodic_set.motif are accessible through
periodic_set.asymmetric_unit.

	Returns

	A numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] with k+1 columns, the PDD of periodic_set up to k.
The first column contains the weights of rows. If return_row_groups is True,
returns a tuple (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], list).

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

Examples

Make list of PDDs with k=100 for crystals in data.cif:

pdds = []
for periodic_set in amd.CifReader('data.cif'):
 # do not lexicographically order rows
 pdds.append(amd.PDD(periodic_set, 100, lexsort=False))

Make list of PDDs with k=10 for crystals in these CSD refcode families:

pdds = []
for periodic_set in amd.CSDReader(['HXACAN', 'ACSALA'], families=True):
 # do not collapse rows
 pdds.append(amd.PDD(periodic_set, 10, collapse=False))

Manually pass a periodic set as a tuple (motif, cell):

simple cubic lattice
motif = np.array([[0,0,0]])
cell = np.array([[1,0,0], [0,1,0], [0,0,1]])
cubic_amd = amd.PDD((motif, cell), 100)

	
amd.calculate.PDD_to_AMD(pdd: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Calculates an AMD from a PDD. Faster than computing both from scratch.

	Parameters

	pdd (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – The PDD of a periodic set.

	Returns

	The AMD of the periodic set.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
amd.calculate.AMD_finite(motif: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	The AMD of a finite m-point set up to k = m-1.

	Parameters

	motif (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Coordinates of a set of points.

	Returns

	A vector length m-1 (where m is the number of points), the AMD of motif.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

Examples

The AMD distance (L-infinity) between finite trapezium and kite point sets:

trapezium = np.array([[0,0],[1,1],[3,1],[4,0]])
kite = np.array([[0,0],[1,1],[1,-1],[4,0]])

trap_amd = amd.AMD_finite(trapezium)
kite_amd = amd.AMD_finite(kite)

l_inf_dist = np.amax(np.abs(trap_amd - kite_amd))

	
amd.calculate.PDD_finite(motif: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], lexsort: bool = True, collapse: bool = True, collapse_tol: float = 0.0001, return_row_groups: bool = False) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	The PDD of a finite m-point set up to k = m-1.

	Parameters

	
	motif (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Coordinates of a set of points.

	lexsort (bool, default True) – Whether or not to lexicographically order the rows. Default True.

	collapse (bool, default True) – Whether or not to collapse repeated rows (within the tolerance collapse_tol).
Default True.

	collapse_tol (float, default 1e-4) – If two rows have all elements closer than collapse_tol, they are merged and
weights are given to rows in proportion to the number of times they appeared.
Default is 0.0001.

	return_row_groups (bool, default False) – Whether to return data about which PDD rows correspond to which points.
If True, a tuple is returned (pdd, groups) where groups[i]
contains the indices of the point(s) corresponding to pdd[i].

	Returns

	A numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] with m columns (where m is the number of points),
the PDD of motif. The first column contains the weights of rows.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

Examples

Find PDD distance between finite trapezium and kite point sets:

trapezium = np.array([[0,0],[1,1],[3,1],[4,0]])
kite = np.array([[0,0],[1,1],[1,-1],[4,0]])

trap_pdd = amd.PDD_finite(trapezium)
kite_pdd = amd.PDD_finite(kite)

dist = amd.EMD(trap_pdd, kite_pdd)

	
amd.calculate.PDD_reconstructable(periodic_set: Union[amd.periodicset.PeriodicSet, Tuple[numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]]], lexsort: bool = True) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	The PDD of a periodic set with k (no of columns) large enough such that
the periodic set can be reconstructed from the PDD.

	Parameters

	
	periodic_set (periodicset.PeriodicSet tuple of numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] s) – A periodic set represented by a periodicset.PeriodicSet or
by a tuple (motif, cell) with coordinates in Cartesian form and a square unit cell.

	lexsort (bool, default True) – Whether or not to lexicographically order the rows. Default True.

	Returns

	An ndarray, the PDD of periodic_set with enough columns to be reconstructable.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
amd.calculate.PPC(periodic_set: Union[amd.periodicset.PeriodicSet, Tuple[numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]]]) → float

	The point packing coefficient (PPC) of periodic_set.

The PPC is a constant of any periodic set determining the
asymptotic behaviour of its AMD and PDD. As \(k \rightarrow \infty\),
the ratio \(\text{AMD}_k / \sqrt[n]{k}\) converges to the PPC,
as does any row of its PDD.

For a unit cell \(U\) and \(m\) motif points in \(n\) dimensions,

\[\text{PPC} = \sqrt[n]{\frac{\text{Vol}[U]}{m V_n}}\]

where \(V_n\) is the volume of a unit sphere in \(n\) dimensions.

	Parameters

	periodic_set (periodicset.PeriodicSet or tuple of) – numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] s (motif, cell) representing the periodic set
in Cartesian form.

	Returns

	The PPC of periodic_set.

	Return type

	float

	
amd.calculate.AMD_estimate(periodic_set: Union[amd.periodicset.PeriodicSet, Tuple[numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]]], k: int) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Calculates an estimate of AMD based on the PPC, using the fact that

\[\lim_{k\rightarrow\infty}\frac{\text{AMD}_k}{\sqrt[n]{k}} = \sqrt[n]{\frac{\text{Vol}[U]}{m V_n}}\]

where \(U\) is the unit cell, \(m\) is the number of motif points and
\(V_n\) is the volume of a unit sphere in \(n\)-dimensional space.

amd.compare module

Functions for comparing AMDs and PDDs of crystals.

	
amd.compare.compare(crystals, crystals_=None, by='AMD', k=100, **kwargs)

	Given one or two sets of periodic set(s), refcode(s) or cif(s), compare them
returning a DataFrame of the distance matrix. Default is to comapre by PDD
with k=100. Accepts most keyword arguments accepted by the CifReader, CSDReader
and compare functions, for a full list see the documentation Quick Start page.
Note that using refcodes requires csd-python-api.

	Parameters

	
	crystals (array or list of arrays) – One or a collection of paths, refcodes, file objects or periodicset.PeriodicSet s.

	crystals_ (array or list of arrays, optional) – One or a collection of paths, refcodes, file objects or periodicset.PeriodicSet s.

	by (str, default 'AMD') – Invariant to compare by, either ‘AMD’ or ‘PDD’.

	k (int, default 100) – k value to use for the invariants (length of AMD, or number of columns in PDD).

	Returns

	df – DataFrame of the distance matrix for the given crystals compared by the chosen invariant.

	Return type

	pandas.DataFrame [https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	Raises

	ValueError – If by is not ‘AMD’ or ‘PDD’, if either set given have no valid crystals
 to compare, or if crystals or crystals_ are an invalid type.

Examples

Compare everything in a .cif (deafult, AMD with k=100):

df = amd.compare('data.cif')

Compare everything in one cif with all crystals in all cifs in a directory (PDD, k=50):

df = amd.compare('data.cif', 'dir/to/cifs', by='PDD', k=50)

Examples (csd-python-api only)

Compare two crystals by CSD refcode (PDD, k=50):

df = amd.compare('DEBXIT01', 'DEBXIT02', by='PDD', k=50)

Compare everything in a refcode family (AMD, k=100):

df = amd.compare('DEBXIT', families=True)

	
amd.compare.EMD(pdd: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], pdd_: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], metric: Optional[str] = 'chebyshev', return_transport: Optional[bool] = False, **kwargs)

	Earth mover’s distance (EMD) between two PDDs, also known as
the Wasserstein metric.

	Parameters

	
	pdd (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – PDD of a crystal.

	pdd_ (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – PDD of a crystal.

	metric (str or callable, default 'chebyshev') – EMD between PDDs requires defining a distance between PDD rows.
By default, Chebyshev (L-infinity) distance is chosen as with AMDs.
Accepts any metric accepted by scipy.spatial.distance.cdist() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.cdist.html#scipy.spatial.distance.cdist].

	return_transport (bool, default False) – Return a tuple (distance, transport_plan) with the optimal transport.

	Returns

	emd – Earth mover’s distance between two PDDs.

	Return type

	float

	Raises

	ValueError – Thrown if pdd and pdd_ do not have the same number of
 columns (k value).

	
amd.compare.AMD_cdist(amds: Union[numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], List[numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]]], amds_: Union[numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], List[numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]]], metric: str = 'chebyshev', low_memory: bool = False, **kwargs) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Compare two sets of AMDs with each other, returning a distance matrix.
This function is essentially identical to scipy.spatial.distance.cdist() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.cdist.html#scipy.spatial.distance.cdist]
with the default metric chebyshev.

	Parameters

	
	amds (array_like) – A list of AMDs.

	amds_ (array_like) – A list of AMDs.

	metric (str or callable, default 'chebyshev') – Usually AMDs are compared with the Chebyshev (L-infinitys) distance.
Can take any metric accepted by scipy.spatial.distance.cdist() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.cdist.html#scipy.spatial.distance.cdist].

	low_memory (bool, default False) – Use a slower but more memory efficient method for
large collections of AMDs (Chebyshev metric only).

	Returns

	dm – A distance matrix shape (len(amds), len(amds_)).
dm[ij] is the distance (given by metric)
between amds[i] and amds[j].

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
amd.compare.AMD_pdist(amds: Union[numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], List[numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]]], metric: str = 'chebyshev', low_memory: bool = False, **kwargs) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Compare a set of AMDs pairwise, returning a condensed distance matrix.
This function is essentially identical to scipy.spatial.distance.pdist() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.pdist.html#scipy.spatial.distance.pdist]
with the default metric chebyshev.

	Parameters

	
	amds (array_like) – An array/list of AMDs.

	metric (str or callable, default 'chebyshev') – Usually AMDs are compared with the Chebyshev (L-infinity) distance.
Can take any metric accepted by scipy.spatial.distance.pdist() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.pdist.html#scipy.spatial.distance.pdist].

	low_memory (bool, default False) – Optionally use a slightly slower but more memory efficient method for
large collections of AMDs (Chebyshev metric only).

	Returns

	Returns a condensed distance matrix. Collapses a square distance
matrix into a vector, just keeping the upper half. See
scipy.spatial.distance.squareform() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.squareform.html#scipy.spatial.distance.squareform] to convert to a square
distance matrix or for more on condensed distance matrices.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
amd.compare.PDD_cdist(pdds: List[numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]], pdds_: List[numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]], metric: str = 'chebyshev', n_jobs=None, verbose=0, **kwargs) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Compare two sets of PDDs with each other, returning a distance matrix.

	Parameters

	
	pdds (List[numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]]) – A list of PDDs.

	pdds_ (List[numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]]) – A list of PDDs.

	metric (str or callable, default 'chebyshev') – Usually PDD rows are compared with the Chebyshev/l-infinity distance.
Can take any metric accepted by scipy.spatial.distance.cdist() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.cdist.html#scipy.spatial.distance.cdist].

	n_jobs (int, default None) – Maximum number of concurrent jobs for parallel processing with joblib.
Set to -1 to use the maximum possible. Note that for small inputs (< 100),
using parallel processing may be slower than the default n_jobs=None.

	verbose (int, default 0) – The verbosity level. Higher = more verbose, see joblib.Parallel.

	Returns

	Returns a distance matrix shape (len(pdds), len(pdds_)).
The \(ij\) th entry is the distance between pdds[i]
and pdds_[j] given by Earth mover’s distance.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
amd.compare.PDD_pdist(pdds: List[numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]], metric: str = 'chebyshev', n_jobs=None, verbose=0, **kwargs) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Compare a set of PDDs pairwise, returning a condensed distance matrix.

	Parameters

	
	pdds (List[numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]]) – A list of PDDs.

	metric (str or callable, default 'chebyshev') – Usually PDD rows are compared with the Chebyshev/l-infinity distance.
Can take any metric accepted by scipy.spatial.distance.pdist() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.pdist.html#scipy.spatial.distance.pdist].

	n_jobs (int, default None) – Maximum number of concurrent jobs for parallel processing with joblib.
Set to -1 to use the maximum possible. Note that for small inputs (< 100),
using parallel processing may be slower than the default n_jobs=None.

	verbose (int, default 0) – The verbosity level. Higher = more verbose, see joblib.Parallel for more.

	Returns

	Returns a condensed distance matrix. Collapses a square
distance matrix into a vector just keeping the upper half. See
scipy.spatial.distance.squareform() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.squareform.html#scipy.spatial.distance.squareform] to convert to a square
distance matrix or for more on condensed distance matrices.

	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
amd.compare.emd(pdd: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], pdd_: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], metric: Optional[str] = 'chebyshev', return_transport: Optional[bool] = False, **kwargs)

	Alias for amd.EMD().

amd.io module

Tools for reading crystals from files, or from the CSD with csd-python-api.
The readers return periodicset.PeriodicSet objects representing the
crystal which can be passed to calculate.AMD() and calculate.PDD()
to get their invariants.

	
class amd.io.CifReader(path, reader='ase', remove_hydrogens=False, disorder='skip', heaviest_component=False, show_warnings=True)

	Bases: amd.io._Reader

Read all structures in a .cif file or all files in a folder
with ase or csd-python-api (if installed), yielding
periodicset.PeriodicSet s.

	Parameters

	
	path (str) – Path to a .cif file or directory. (Other files are accepted when using
reader='ccdc', if csd-python-api is installed.)

	reader (str, optional) – The backend package used for parsing. Default is ase,
to use csd-python-api change to ccdc. The ccdc reader should
be able to read any format accepted by ccdc.io.EntryReader [https://downloads.ccdc.cam.ac.uk/documentation/API/modules/io_api.html#ccdc.io.EntryReader],
though only cifs have been tested.

	remove_hydrogens (bool, optional) – Remove Hydrogens from the crystal.

	disorder (str, optional) – Controls how disordered structures are handled. Default is skip which skips any crystal
with disorder, since disorder conflicts with the periodic set model. To read disordered
structures anyway, choose either ordered_sites to remove sites with disorder or
all_sites include all sites regardless.

	heaviest_component (bool, optional) – csd-python-api only. Removes all but the heaviest molecule in the asymmeric unit,
intended for removing solvents.

	show_warnings (bool, optional) – Controls whether warnings that arise during reading are printed.

	Yields

	periodicset.PeriodicSet – Represents the crystal as a periodic set, consisting of a finite set of points (motif)
and lattice (unit cell). Contains other useful data, e.g. the crystal’s name and
information about the asymmetric unit for calculation.

Examples

Put all crystals in a .CIF in a list
structures = list(amd.CifReader('mycif.cif'))

Can also accept path to a directory, reading all files inside
structures = list(amd.CifReader('path/to/folder'))

Reads just one if the .CIF has just one crystal
periodic_set = amd.CifReader('mycif.cif').read_one()

List of AMDs (k=100) of crystals in a .CIF
amds = [amd.AMD(periodic_set, 100) for periodic_set in amd.CifReader('mycif.cif')]

	
class amd.io.CSDReader(refcodes=None, families=False, remove_hydrogens=False, disorder='skip', heaviest_component=False, show_warnings=True)

	Bases: amd.io._Reader

Read structures from the CSD with csd-python-api, yielding
periodicset.PeriodicSet s.

	Parameters

	
	refcodes (List[str], optional) – List of CSD refcodes to read. If None or ‘CSD’, iterates over the whole CSD.

	families (bool, optional) – Read all entries whose refcode starts with the given strings, or ‘families’
(e.g. giving ‘DEBXIT’ reads all entries starting with DEBXIT).

	remove_hydrogens (bool, optional) – Remove hydrogens from the crystal.

	disorder (str, optional) – Controls how disordered structures are handled. Default is skip which skips any crystal
with disorder, since disorder conflicts with the periodic set model. To read disordered
structures anyway, choose either ordered_sites to remove sites with disorder or
all_sites include all sites regardless.

	heaviest_component (bool, optional) – csd-python-api only. Removes all but the heaviest molecule in the asymmeric unit,
intended for removing solvents.

	show_warnings (bool, optional) – Controls whether warnings that arise during reading are printed.

	Yields

	periodicset.PeriodicSet – Represents the crystal as a periodic set, consisting of a finite set of points (motif)
and lattice (unit cell). Contains other useful data, e.g. the crystal’s name and
information about the asymmetric unit for calculation.

Examples

Put these entries in a list
refcodes = ['DEBXIT01', 'DEBXIT05', 'HXACAN01']
structures = list(amd.CSDReader(refcodes))

Read refcode families (any whose refcode starts with strings in the list)
refcode_families = ['ACSALA', 'HXACAN']
structures = list(amd.CSDReader(refcode_families, families=True))

Get AMDs (k=100) for crystals in these families
refcodes = ['ACSALA', 'HXACAN']
amds = []
for periodic_set in amd.CSDReader(refcodes, families=True):
 amds.append(amd.AMD(periodic_set, 100))

Giving the reader nothing reads from the whole CSD.
reader = amd.CSDReader()

looping over this generic reader will yield all CSD entries
for periodic_set in reader:
 ...

or, read structures by refcode on demand
debxit01 = reader.entry('DEBXIT01')

	
entry(refcode: str, **kwargs) → amd.periodicset.PeriodicSet

	Read a crystal given a CSD refcode, returning a periodicset.PeriodicSet.
If given kwargs, overrides the kwargs given to the Reader.

	
family(refcode_family: str, **kwargs)

	

	
amd.io.entry_to_periodicset(entry, remove_hydrogens=False, disorder='skip', heaviest_component=False) → amd.periodicset.PeriodicSet

	ccdc.entry.Entry [https://downloads.ccdc.cam.ac.uk/documentation/API/modules/entry_api.html#ccdc.entry.Entry] –> amd.periodicset.PeriodicSet.
Entry is the type returned by ccdc.io.EntryReader [https://downloads.ccdc.cam.ac.uk/documentation/API/modules/io_api.html#ccdc.io.EntryReader].

	Parameters

	
	entry (ccdc.entry.Entry [https://downloads.ccdc.cam.ac.uk/documentation/API/modules/entry_api.html#ccdc.entry.Entry]) – A ccdc Entry object representing a database entry.

	remove_hydrogens (bool, optional) – Remove Hydrogens from the crystal.

	disorder (str, optional) – Controls how disordered structures are handled. Default is skip which skips any crystal
with disorder, since disorder conflicts with the periodic set model. To read disordered
structures anyway, choose either ordered_sites to remove sites with disorder or
all_sites include all sites regardless.

	heaviest_component (bool, optional) – Removes all but the heaviest molecule in the asymmeric unit,
intended for removing solvents.

	Returns

	Represents the crystal as a periodic set, consisting of a finite set of points (motif)
and lattice (unit cell). Contains other useful data, e.g. the crystal’s name and
information about the asymmetric unit for calculation.

	Return type

	periodicset.PeriodicSet

	Raises

	_ParseError : – Raised if the structure can/should not be parsed for the following reasons:
 1. entry.has_3d_structure is False,
 2. disorder == ‘skip’ and any of:
 (a) any disorder flag is True,
 (b) any atom has fractional occupancy,
 (c) any atom’s label ends with ‘?’,
 3. entry.crystal.molecule.all_atoms_have_sites is False,
 4. a.fractional_coordinates is None for any a in entry.crystal.disordered_molecule,
 5. motif is empty after removing H, disordered sites or solvents.

	
amd.io.cifblock_to_periodicset(block, remove_hydrogens=False, disorder='skip') → amd.periodicset.PeriodicSet

	ase.io.cif.CIFBlock –> amd.periodicset.PeriodicSet.
CIFBlock is the type returned by ase.io.cif.parse_cif.

	Parameters

	
	block (ase.io.cif.CIFBlock) – An ase CIFBlock object representing a crystal.

	remove_hydrogens (bool, optional) – Remove Hydrogens from the crystal.

	disorder (str, optional) – Controls how disordered structures are handled. Default is skip which skips any crystal
with disorder, since disorder conflicts with the periodic set model. To read disordered
structures anyway, choose either ordered_sites to remove sites with disorder or
all_sites include all sites regardless.

	Returns

	Represents the crystal as a periodic set, consisting of a finite set of points (motif)
and lattice (unit cell). Contains other useful data, e.g. the crystal’s name and
information about the asymmetric unit for calculation.

	Return type

	periodicset.PeriodicSet

	Raises

	_ParseError – Raised if the structure can/should not be parsed for the following reasons:
 1. no sites found or motif is empty after removing H or disordered sites,
 2. a site has missing coordinates,
 3. disorder == ‘skip’ and any of:
 (a) any atom has fractional occupancy,
 (b) any atom’s label ends with ‘?’.

amd.periodicset module

Implements the PeriodicSet class representing a periodic set,
defined by a motif and unit cell. This models a crystal with a point at the
center of each atom.

This is the object type yielded by the readers io.CifReader and
io.CSDReader. The PeriodicSet can be passed as the first argument
to calculate.AMD() or calculate.PDD() to calculate its invariants.

	
class amd.periodicset.PeriodicSet(motif: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], cell: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], name: Optional[str] = None, asymmetric_unit: Optional[numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]] = None, wyckoff_multiplicities: Optional[numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]] = None, types: Optional[numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]] = None)

	Bases: object

A periodic set is the mathematical representation of a crystal by putting a
single point in the center of every atom. It is defined by a basis (unit cell)
and collection of points (motif) which repeats according to the basis.

PeriodicSet s are returned by the readers in the io module.
Instances of this object can be passed to calculate.AMD() or
calculate.PDD() to calculate the invariant.

	Parameters

	
	motif (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Cartesian (orthogonal) coordinates of the motif, shape (no points, dims).

	cell (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Cartesian (orthogonal) square array representing the unit cell, shape (dims, dims).
Use utils.cellpar_to_cell() to convert 6 cell parameters to an orthogonal square matrix.

	name (str, optional) – Name of the periodic set.

	asymmetric_unit (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], optional) – Indices for the asymmetric unit, pointing to the motif.

	wyckoff_multiplicities (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], optional) – Wyckoff multiplicities of each atom in the asymmetric unit
(number of unique sites generated under all symmetries).

	types (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], optional) – Array of atomic numbers of motif points.

amd.utils module

Helpful utility functions, e.g. unit cell diameter, converting
cell parameters to Cartesian form, and an ETA class.

	
amd.utils.diameter(cell)

	Diameter of a unit cell (as a square matrix in Cartesian form)
in 3 or fewer dimensions.

	
amd.utils.cellpar_to_cell(a, b, c, alpha, beta, gamma)

	Simplified version of function from ase.geometry [https://wiki.fysik.dtu.dk/ase/ase/geometry.html#module-ase.geometry] of the same name.
3D unit cell parameters a,b,c,α,β,γ –> cell as 3x3 NumPy array.

	
amd.utils.cellpar_to_cell_2D(a, b, alpha)

	2D unit cell parameters a,b,α –> cell as 2x2 ndarray.

	
amd.utils.neighbours_from_distance_matrix(n: int, dm: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) → Tuple[numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]]

	Given a distance matrix, find the n nearest neighbours of each item.

	Parameters

	
	n (int) – Number of nearest neighbours to find for each item.

	dm (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – 2D distance matrix or 1D condensed distance matrix.

	Returns

	nn_dm, inds – nn_dm[i][j] is the distance from item i to its j+1 st
nearest neighbour, and inds[i][j] is the index of this neighbour
(j+1 since index 0 is the first nearest neighbour).

	Return type

	Tuple[numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]]

	
amd.utils.lattice_cubic(scale=1, dims=3)

	Return a pair (motif, cell) representing a hexagonal lattice, passable to
amd.AMD() or amd.PDD().

	
amd.utils.lattice_hexagonal(scale=1)

	Dimension 3 only. Return a pair (motif, cell) representing a cubic lattice,
passable to amd.AMD() or amd.PDD().

	
amd.utils.random_cell(length_bounds=(1, 2), angle_bounds=(60, 120), dims=3)

	Dimensions 2 and 3 only. Random unit cell with uniformally chosen length and
angle parameters between bounds.

 Python Module Index

 a

 		 	

 		
 a	

 	[image: -]
 	
 amd	

 	
 	
 amd.calculate	

 	
 	
 amd.compare	

 	
 	
 amd.io	

 	
 	
 amd.periodicset	

 	
 	
 amd.utils	

Index

 A
 | C
 | D
 | E
 | F
 | L
 | M
 | N
 | P
 | R

A

 	
 	
 amd

 	module

 	AMD() (in module amd.calculate)

 	
 amd.calculate

 	module

 	
 amd.compare

 	module

 	
 amd.io

 	module

 	
 	
 amd.periodicset

 	module

 	
 amd.utils

 	module

 	AMD_cdist() (in module amd.compare)

 	AMD_estimate() (in module amd.calculate)

 	AMD_finite() (in module amd.calculate)

 	AMD_pdist() (in module amd.compare)

C

 	
 	cellpar_to_cell() (in module amd.utils)

 	cellpar_to_cell_2D() (in module amd.utils)

 	cifblock_to_periodicset() (in module amd.io)

 	
 	CifReader (class in amd.io)

 	compare() (in module amd.compare)

 	CSDReader (class in amd.io)

D

 	
 	diameter() (in module amd.utils)

E

 	
 	EMD() (in module amd.compare)

 	emd() (in module amd.compare)

 	
 	entry() (amd.io.CSDReader method)

 	entry_to_periodicset() (in module amd.io)

F

 	
 	family() (amd.io.CSDReader method)

L

 	
 	lattice_cubic() (in module amd.utils)

 	
 	lattice_hexagonal() (in module amd.utils)

M

 	
 	
 module

 	amd

 	amd.calculate

 	amd.compare

 	amd.io

 	amd.periodicset

 	amd.utils

N

 	
 	neighbours_from_distance_matrix() (in module amd.utils)

P

 	
 	PDD() (in module amd.calculate)

 	PDD_cdist() (in module amd.compare)

 	PDD_finite() (in module amd.calculate)

 	PDD_pdist() (in module amd.compare)

 	
 	PDD_reconstructable() (in module amd.calculate)

 	PDD_to_AMD() (in module amd.calculate)

 	PeriodicSet (class in amd.periodicset)

 	PPC() (in module amd.calculate)

R

 	
 	random_cell() (in module amd.utils)

average-minimum-distance: isometrically invariant crystal fingerprints

Documentation is available in the docstrings and
online at https://average-minimum-distance.readthedocs.io.

List of modules

	Module

	Description

	calculate

	Calculate invariants (fingerprints) of periodic sets (crystals)

	compare

	Compare fingerprints of crystals

	io

	Read periodic sets from a file or the CSD

	periodicset

	Implements the PeriodicSet object

	utils

	General utility functions/classes

Miscellaneous

Fingerprints of finite point sets

AMDs and PDDs also work for finite point sets. calculate.AMD_finite() and
calculate.PDD_finite() accept a NumPy array containing the points and return the AMD/PDD.
Unlike amd.AMD and amd.PDD no integer k is passed; instead the distances to all
neighbours are found (number of columns = no of points - 1).

Compare AMDs of trapezium and kite shaped finite point sets
trapezium = np.array([[0,0],[1,1],[3,1],[4,0]])
kite = np.array([[0,0],[1,1],[1,-1],[4,0]])

trap_amd = amd.AMD_finite(trapezium)
kite_amd = amd.AMD_finite(kite)

amd_dist = np.amax(np.abs(trap_amd - kite_amd))

Reconstruction of a periodic set from its PDD

It is possible to reconstruct a periodic set up to isometry from its PDD if the periodic set
satisfies certain conditions (a ‘general position’) and the PDD has enough columns. This is
implemented via the functions amd.PDD_reconstructable(), which returns the PDD
of a periodic set with enough columns, and amd.reconstruct() which returns
the motif given the PDD and unit cell. Reconstruction is not optimised and very slow for
most real crystals, it’s also not well tested and may not work for some crystals.

 nav.xhtml

 Table of Contents

 		
 average-minimum-distance: isometrically invariant crystal fingerprints

_static/file.png

_static/minus.png

_static/plus.png

