

average-minimum-distance: geometry based crystal descriptors

[image: PyPI]
 [https://pypi.org/project/average-minimum-distance/][image: Status]
 [https://pypi.org/project/average-minimum-distance/][image: Build Status]
 [https://scrutinizer-ci.com/g/dwiddo/average-minimum-distance/][image: Read the Docs]
 [https://average-minimum-distance.readthedocs.io][image: CC-0 license]
 [https://creativecommons.org/licenses/by-nc-sa/4.0/]
	PyPI project: https://pypi.org/project/average-minimum-distance

	Documentation: https://average-minimum-distance.readthedocs.io

	Source code: https://github.com/dwiddo/average-minimum-distance

	References (bib references at the bottom of this page):

	Average minimum distances of periodic point sets - foundational invariants for mapping periodic crystals. MATCH Communications in Mathematical and in Computer Chemistry, 87(3):529-559 (2022). https://doi.org/10.46793/match.87-3.529W

	Resolving the data ambiguity for periodic crystals. Advances in Neural Information Processing Systems (Proceedings of NeurIPS 2022), to appear. https://arxiv.org/abs/2108.04798

What’s amd?

The typical representation of a crystal as a motif and unit cell is ambiguous, because many choices of cell and motif define the same crystal. This package implements crystal descriptors designed to be isometry invariants, meaning they are always same for any two crystals which are geometrically equivalent, independent of the unit cell and motif. The descriptors can be compared to give a distance which is 0 for identical crystals, and close to 0 for similar crystals (a continuous metric).

The pointwise distance distribution (PDD) is a descriptor that records the environment of each atom in the unit cell by listing distances to neighbouring atoms. Two PDDs are compared using an optimal matching algorithm (Earth Mover’s distance [https://en.wikipedia.org/wiki/Earth_mover%27s_distance]). Taking the average of a PDD gives a vector called the average minimum distance (AMD), which is significantly faster to compare but can still identify crystals with similar geometry. Both AMD and PDD take a parameter k, the number of neighbouring atoms considered for each atom in the unit cell.

Getting started

Use pip to install average-minimum-distance:

pip install average-minimum-distance

Then import average-minimum-distance with import amd.

amd.compare() compares crystals in cif files by AMD or PDD descriptors, e.g.

import amd

compare all items in one cif by AMD, k=100
df = amd.compare('file.cif', by='AMD', k=100)
compare all in file1 vs all in file2 by PDD, k=100
df = amd.compare('file1.cif', 'file2.cif', by='PDD', k=100)

The distance matrix is returned as a pandas DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html]. amd.compare() can also accept a folder or list of cifs.

amd.compare() reads crystals, calculates their descriptors and compares them, but these steps can be done separately (e.g. to save the descriptors to a file, see below). amd.compare() accepts several optional parameters, see the documentation for a full list [https://average-minimum-distance.readthedocs.io/en/latest/Getting_Started.html#full-list-of-optional-parameters].

CSD Python API only: amd.compare() accepts one or more CSD refcodes or other file formats instead of cifs (by passing reader='ccdc').

Choosing a value of k

The parameter k is the number of neighbouring atoms considered for each atom in a unit cell. Two crystals with the same unit molecule will have a small AMD/PDD distance for small enough k (e.g. k = 5), and a larger k means the geometry must be similar up to a larger radius for the distance to be small. The default for amd.compare() is k = 100, but if this is significantly smaller than the number of atoms in the unit molecule, it may be better to choose a larger value e.g. k = 300. It is usually not useful to choose k too large (many times larger than the number of atoms in the unit molecule).

Reading crystals, calculating AMDs/PDDs

This code reads a cif file and computes the list of AMDs (k = 100):

import amd

reader = amd.CifReader('file.cif')
amds = [amd.AMD(crystal, 100) for crystal in reader]
To calculate the PDDs:
pdds = [amd.PDD(crystal, 100) for crystal in reader]

CifReader accepts some optional parameters, e.g. for removing Hydrogen or handling disorder, see here for a full list [https://average-minimum-distance.readthedocs.io/en/latest/Reading_cifs.html].

CSD Python API only: CSD crystals can be read via the CSD Python API with amd.CSDReader, see the documentation for details [https://average-minimum-distance.readthedocs.io/en/latest/Reading_from_the_CSD.html]. CifReader can accept file formats other than .cif by passing reader='ccdc'.

Comparing by AMD or PDD

To compare all crystals in one collection with each other, use amd.AMD_pdist() or amd.PDD_pdist(), which accept a list of AMDs/PDDs and return a condensed distance matrix like SciPy’s pdist(). Here’s a full example of reading crystals from a .cif, calculating the descriptors and comparing them:

import amd

read and calculate AMDs and PDDs (k = 100)
crystals = list(amd.CifReader('path/to/file.cif'))
amds = [amd.AMD(crystal, 100) for crystal in reader]
pdds = [amd.PDD(crystal, 100) for crystal in reader]

amd_cdm = amd.AMD_pdist(amds) # compare AMDs pairwise
pdd_cdm = amd.PDD_pdist(pdds) # compare PDDs pairwise

Use squareform for a symmetric 2D distance matrix
from scipy.distance.spatial import squareform
amd_dm = squareform(amd_cdm)

Note: AMDs can be quickly computed from PDDs with ``amd.PDD_to_AMD()``.

The default metric for comparison is chebyshev (L-infinity), though it can be changed to anything accepted by SciPy’s pdist, e.g. euclidean.

To compare crystals in one set with those in another set, use amd.AMD_cdist or amd.PDD_cdist:

import amd

amds1 = [amd.AMD(c, 100) for c in amd.CifReader('set1.cif')]
amds2 = [amd.AMD(c, 100) for c in amd.CifReader('set2.cif')]
dm[i][j] = AMD distance between amds1[i] & amds2[j]
dm = amd.AMD_cdist(amds)

Example: AMD-based dendrogram

This example compares some crystals in a cif by AMD (k = 100) and plots a single linkage dendrogram:

import amd
import matplotlib.pyplot as plt
from scipy.cluster import hierarchy

crystals = list(amd.CifReader('crystals.cif'))
names = [crystal.name for crystal in crystals]
amds = [amd.AMD(crystal, 100) for crystal in crystals]
cdm = amd.AMD_pdist(amds)
Z = hierarchy.linkage(cdm, 'single')
dn = hierarchy.dendrogram(Z, labels=names)
plt.show()

Cite us [bookmark: citeus]

Use the following bib references to cite AMD or PDD.

Average minimum distances of periodic point sets - foundational invariants for mapping periodic crystals. MATCH Communications in Mathematical and in Computer Chemistry, 87(3), 529-559 (2022). <https://doi.org/10.46793/match.87-3.529W>.

@article{widdowson2022average,
 title = {Average Minimum Distances of periodic point sets - foundational invariants for mapping periodic crystals},
 author = {Widdowson, Daniel and Mosca, Marco M and Pulido, Angeles and Kurlin, Vitaliy and Cooper, Andrew I},
 journal = {MATCH Communications in Mathematical and in Computer Chemistry},
 doi = {10.46793/match.87-3.529W},
 volume = {87},
 number = {3},
 pages = {529-559},
 year = {2022}
}

Resolving the data ambiguity for periodic crystals. Advances in Neural Information Processing Systems (NeurIPS 2022), v.35. <https://openreview.net/forum?id=4wrB7Mo9_OQ>.

@inproceedings{widdowson2022resolving,
 title = {Resolving the data ambiguity for periodic crystals},
 author = {Widdowson, Daniel and Kurlin, Vitaliy},
 booktitle = {Advances in Neural Information Processing Systems},
 year = {2022},
 url = {https://openreview.net/forum?id=4wrB7Mo9_OQ}
}

Indices and tables

	Index

	Module Index

	Search Page

Getting Started

Comparing crystals

amd.compare() extracts crystals from one or more CIFs
and compares them by AMD or PDD. For example, to compare all crystals in a
cif by AMD with k = 100:

import amd
df = amd.compare('crystals.cif', by='AMD', k=100)

To compare by PDD, use by='PDD'. A distance matrix is returned as a pandas DataFrame.
amd.compare() can also take two paths to compare all
crystals in one file with those in the other.

If csd-python-api is installed, amd.compare() can also accept lists of
CSD refcodes, or other formats.

Read, calculate descriptors and compare separately

amd.compare() reads crystals, calculates AMD or PDD, and compares them. It is
sometimes useful to do these steps separately, e.g. to save the descriptors to a file. The code above using
amd.compare() is equivalent to the following:

import amd
import pandas as pd
from scipy.spatial.distance import squareform

crystals = list(amd.CifReader('crystals.cif')) # read crystals
amds = [amd.AMD(crystal, 100) for crystal in crystals] # calculate AMDs
dm = squareform(amd.AMD_pdist(amds)) # compare AMDs pairwise
names = [crystal.name for crystal in crystals]
df = pd.DataFrame(dm, index=names, columns=names)

Here, amd.AMD_pdist() is used to compare the AMDs pairwise, returning a condensed distance matrix (see
scipy.spatial.distance.squareform() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.squareform.html#scipy.spatial.distance.squareform], which converts it to a symmetric 2D distance matrix). There is
an equivalent function for comparing PDDs, amd.PDD_pdist(). There are also two cdist functions, which take
two collections of descriptors and compares everything in one set with the other returning a 2D distance matrix.

Write crystals or their descriptors to a file

pickle is an easy way to store crystals or their descriptors.

import amd
import pickle

crystals = list(amd.CifReader('crystals.cif'))

with open('crystals.pkl', 'wb') as f: # write
 pickle.dump(crystals, f)

with open('crystals.pkl', 'rb') as f: # read
 crystals = pickle.load(f)

List of optional parameters

amd.compare() reads crystals, computes their
invariants and compares them in one function for convinience. It accepts
most of optional parameters from any of these steps, all are listed below.

Reader options

Parameters of amd.CifReader or amd.CSDReader.

	reader (default ase) controls the backend package used to parse the file. Accepts ase, pycodcif, pymatgen, gemmi and ccdc (if these packages are installed). The ccdc reader can read formats accepted by ccdc.io.EntryReader [https://downloads.ccdc.cam.ac.uk/documentation/API/modules/io_api.html#ccdc.io.EntryReader].

	remove_hydrogens (default False) removes Hydrogen atoms from the structure.

	disorder (default skip) controls how disordered structures are handled. The default skips any crystal with disorder, since disorder conflicts somewhat with the periodic set model. Alternatively, ordered_sites removes atoms with disorder and all_sites includes all atoms regardless.

	show_warnings (default True) chooses whether to print warnings during reading, e.g. from disordered structures or crystals with missing data.

	heaviest_component (default False, CSD Python API only) removes all but the heaviest molecule in the asymmetric unit, intended for removing solvents.

	molecular_centres (default False, CSD Python API only) uses centres of molecules instead of atoms as the motif of the periodic set.

	families (default False, CSD Python API only) interprets the list of strings given as CSD refcode families and reads all crystals in those families.

PDD options

Parameters of amd.PDD(). amd.AMD() does not accept any optional parameters.

	collapse (default True) chooses whether to collpase rows of PDDs which are similar enough (elementwise).

	collapse_tol (default 0.0001) is the tolerance for collapsing PDD rows into one. The merged row is the average of those collapsed.

Comparison options

The first parameter metric below is available to amd.PDD_pdist(),
amd.PDD_cdist(), amd.AMD_pdist() and
amd.AMD_cdist(). n_jobs and verbose only apply to PDD comparisons and
low_memory only applies to AMD comparisons.

	metric (default chebyshev) chooses the metric used to compare AMDs or PDD rows. See SciPy’s cdist/pdist for a list of accepted metrics.

	n_jobs (requires by='PDD', default None) is the number of cores to use for multiprocessing (passed to joblib.Parallel [https://joblib.readthedocs.io/en/latest/generated/joblib.Parallel.html#joblib.Parallel]). Pass -1 to use the maximum.

	verbose (requires by='PDD', default 0) controls the verbosity level, increasing with larger numbers. This is passed to joblib.Parallel [https://joblib.readthedocs.io/en/latest/generated/joblib.Parallel.html#joblib.Parallel], see its documentation for details.

	low_memory (requires by='AMD' and metric='chebyshev', default False) uses a slower algorithm with a smaller memory footprint, better for large input sizes.

Description of AMD/PDD

The AMD of a crystal is an infinite sequence calculated from inter-atomic distances in the crystal.
In contrast, the PDD is a matrix which can have arbitrarily many columns.
In practice, both are calculated up to some chosen number k of entries/columns.

The kth AMD value of a periodic set is the average distance to the kth nearest neighbour over atoms in a unit cell.
That is, to find the AMD for a periodic set up to k, list (in order) distances to the nearest k neighbours (in the infinite crystal)
for every atom in a unit cell take the average, giving a vector length k.

The PDD is related to AMD but contains more information as it avoids the averaging step.
Like AMD, list distances to the nearest k neighbours in order for each atom in a unit cell.
Collect these lists into one matrix with a row for each atom. Then order the rows of the matrix lexicographically.
If any rows are not unique, keep only one and give each a weight proportional to how many copies there are.
The result is the kth PDD of the periodic set. In practice, the weights are kept in the first column of the matrix.

A much more detailed description can be found in our papers on AMD and PDD:

	Average minimum distances of periodic point sets - foundational invariants for mapping periodic crystals. MATCH Communications in Mathematical and in Computer Chemistry, 87(3):529-559 (2022). https://doi.org/10.46793/match.87-3.529W

	Resolving the data ambiguity for periodic crystals. Advances in Neural Information Processing Systems (Proceedings of NeurIPS 2022), to appear. https://arxiv.org/abs/2108.04798

Comparing by AMD/PDD

AMDs are just vectors which can be compared with any metric, as long as k (length of the AMD) is the same.
The default metric used in this package is L-infinity (aka Chebyshev),
since it does not so much accumulate differences in distances across many neighbours.
PDDs are matrices with weighted rows; the appropriate metric to compare them is the Earth mover’s distance [https://en.wikipedia.org/wiki/Earth_mover%27s_distance] (aka Wasserstein metric),
which itself needs a metric to compare two PDD rows (without their weights), where L-infinity is again our default.

Reading cifs

If you have a .cif file, use amd.CifReader to extract the crystals:

list of crystals in a .cif
crystals = list(amd.CifReader('file.cif'))

also accepts a directory, reading all cifs inside
crystals = list(amd.CifReader('path/to/folder'))

loop over the reader and get AMDs (k=100) of crystals
amds = [amd.AMD(c, 100) for c in amd.CifReader('file.cif')]

The CifReader yields PeriodicSet objects representing the crystals,
which can be passed to amd.AMD() or amd.PDD() to calculate their invariants.
The PeriodicSet has attributes name, motif, cell, types (atomic numbers),
as well as asymmetric_unit and wyckoff_multiplicities for use in AMD/PDD calculations.

CSD Python API only: CifReader can accept other file formats when passed reader='ccdc'.

Reading options

CifReader accepts the following parameters (many shared with amd.CSDReader):

amd.CifReader(
 'file.cif', # path to file/folder
 reader='ase', # backend cif parser
 remove_hydrogens=False, # remove Hydrogens
 disorder='skip', # how to handle disorder
 heaviest_component=False, # keep only heaviest molecule (CSD Python API only)
 molecular_centres=False, # take molecular centres as the motif (CSD Python API only)
 show_warnings=True # silence warnings
)

	reader (default ase) controls the backend package used to parse the file. Accepts ase, pycodcif, pymatgen, gemmi and ccdc (if these packages are installed). The ccdc reader can read formats accepted by ccdc.io.EntryReader [https://downloads.ccdc.cam.ac.uk/documentation/API/modules/io_api.html#ccdc.io.EntryReader].

	remove_hydrogens (default False) removes Hydrogen atoms from the structure.

	disorder (default skip) controls how disordered structures are handled. The default skips any crystal with disorder, since disorder conflicts somewhat with the periodic set model. Alternatively, ordered_sites removes atoms with disorder and all_sites includes all atoms regardless.

	heaviest_component (default False, CSD Python API only) removes all but the heaviest molecule in the asymmetric unit, intended for removing solvents.

	molecular_centres (default False, CSD Python API only) uses centres of molecules instead of atoms as the motif of the periodic set.

	show_warnings (default True) chooses whether to print warnings during reading, e.g. from disordered structures or crystals with missing data.

See the references amd.io.CifReader or amd.periodicset.PeriodicSet for more.

Reading from the CSD

If csd-python-api is installed, amd can use it to read crystals directly from the CSD.
amd.CSDReader accepts a list of CSD refcode(s) and yields the crystals.
If None or 'CSD' are passed instead of refcodes, it reads the whole CSD:

Put crystals with these refcodes in a list
refcodes = ['DEBXIT01', 'DEBXIT05', 'HXACAN01']
structures = list(amd.CSDReader(refcodes))

Read refcode families (any whose refcode starts with strings in the list)
refcodes = ['ACSALA', 'HXACAN']
structures = list(amd.CSDReader(refcodes, families=True))

Giving the reader nothing reads from the whole CSD.
for periodic_set in amd.CSDReader():
 ...

CSDReader returns PeriodicSet objects representing the crystals,
which can be passed to amd.AMD() or amd.PDD() to calculate their invariants.
The PeriodicSet has attributes name, motif, cell, types (atomic numbers),
as well as asymmetric_unit and wyckoff_multiplicities for use in AMD/PDD calculations.

Reading options

CSDReader accepts the following parameters (many shared by CifReader):

amd.CSDReader(
 refcodes=None, # list of refcodes (or families) or 'CSD'
 families=False, # interpret refcodes as families
 remove_hydrogens=False, # remove Hydrogens
 disorder='skip', # how to handle disorder
 heaviest_component=False, # keep only heaviest molecule
 molecular_centres=False, # take molecular centres as the motif
 show_warnings=True # silence warnings
)

	families (default False) will interpret the list of strings given as refcode families, i.e. all crystals with refcodes starting with any in the list are read.

	remove_hydrogens (default False) removes Hydrogen atoms from the structure.

	disorder (default skip) controls how disordered structures are handled. The default is to skip any crystal with disorder, since disorder conflicts with the periodic set model. To read disordered structures anyway, choose either ordered_sites to remove sites with disorder or all_sites include all sites regardless.

	heaviest_component (default False) removes all but the heaviest molecule in the asymmetric unit, intended for removing solvents.

	molecular_centres (default False) uses centres of molecules instead of atoms as the motif of the periodic set.

	show_warnings (default True) chooses whether to print warnings during reading, e.g. from disordered structures or crystals with missing data.

See the references amd.io.CSDReader or amd.periodicset.PeriodicSet for more.

Using AMDs

Calculation

The average minimum distance (AMD) of a crystal is given by amd.AMD().
It accepts a crystal and an integer k, returning \(\text{AMD}_k\) as a 1D NumPy array.

If you have a .cif file, use amd.CifReader to read the crystals
(see Reading cifs). If csd-python-api is installed, amd.CSDReader
accepts CSD refcodes (see Reading from the CSD).

get AMDs of crystals in a .cif
crystals = list(amd.CifReader('file.cif'))
amds = [amd.AMD(crystal, 100) for crystal in crystals]

get AMDs of crystals in DEBXIT family
csd_reader = amd.CSDReader('DEBXIT', families=True)
amds = [amd.AMD(crystal, 100) for crystal in csd_reader]

You can also give the coordinates of motif points and unit cell as a tuple of numpy
arrays, in Cartesian form:

AMD (k=10) of 3D cubic lattice
motif = np.array([[0,0,0]])
cell = np.identity(3)
cubic_lattice = (motif, cell)
cubic_amd = amd.AMD(cubic_lattice, 10)

The object returned by amd.AMD(crystal, k) is a vector with k elements.

Note: The AMD of a crystal can be calculated from its PDD with amd.PDD_to_AMD(),
which is faster if both are needed.

Comparison

AMDs are just vectors that can be compared with any metric, but the amd.compare
module has functions to compare collections of AMDs for you.

amd.AMD_pdist() and amd.AMD_cdist()
are like SciPy’s functions pdist and cdist. pdist takes a set and compares all elements pairwise,
whereas cdist takes two sets and compares elements in one with the other.
cdist returns a 2D distance matrix, but pdist returns a condensed distance matrix
(see SciPy’s pdist [https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.pdist.html]).
The default metric for AMD comparisons is L-infinity (aka Chebyshev), but it can be changed to any metric
accepted by SciPy’s pdist/cdist.

compare crystals in file1.cif with those in file2.cif by AMD, k=100
amds1 = [amd.AMD(crystal, 100) for crystal in amd.CifReader('file1.cif')]
amds2 = [amd.AMD(crystal, 100) for crystal in amd.CifReader('file2.cif')]
distance_matrix = amd.AMD_cdist(amds1, amds2)

compare everything in file1.cif with each other (using L-infinity)
condensed_dm = amd.AMD_pdist(amds1)

Comparison options

amd.AMD_pdist() and amd.AMD_cdist() share the following optional arguments:

	metric (default chebyshev) chooses the metric used for comparison, see SciPy’s cdist/pdist [https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.pdist.html] for a list of accepted metrics.

	low_memory (default False, requires metric='chebyshev') uses a slower algorithm with a smaller memory footprint, for larger inputs.

Using PDDs

Calculation

The pointwise distance distribution (PDD) of a crystal is given by amd.PDD().
It accepts a crystal and an integer k, returning the \(\text{PDD}_k\) as a 2D
NumPy array with k + 1 columns, the weights of each row being in the first column.

If you have a .cif file, use amd.CifReader to read the crystals
(see Reading cifs). If csd-python-api is installed, amd.CSDReader
accepts CSD refcodes (see Reading from the CSD).

get PDDs of crystals in a .cif
reader = amd.CifReader('file.cif')
pdds = [amd.PDD(crystal, 100) for crystal in reader]

get PDDs of DEBXIT01 and DEBXIT02 from the CSD
crystals = list(amd.CSDReader(['DEBXIT01', 'DEBXIT02']))
pdds = [amd.PDD(crystal, 50) for crystal in crystals]

You can also give the coordinates of motif points and unit cell as a tuple of numpy
arrays, in Cartesian form:

PDD (k=10) of 3D cubic lattice
motif = np.array([[0,0,0]])
cell = np.identity(3)
cubic_lattice = (motif, cell)
cubic_pdd = amd.PDD(cubic_lattice, 10)

The object returned by amd.PDD() is a NumPy array with k + 1 columns.

Calculation options

amd.PDD() accepts a few optional arguments (not relevant to amd.AMD()):

amd.PDD(
 periodic_set, # input crystal (a PeriodicSet or tuple)
 k, # k value (number of neighbours)
 lexsort=True, # lexicograpgically sort rows
 collapse=True, # collpase identical rows (within tolerance)
 collapse_tol=1e-4, # tolerance for collapsing rows
 return_row_groups=False # return info about which rows collapsed
)

lexsort lexicograpgically orders the rows of the PDD, and collapse merges rows
if all elements of rows are within collapse_tol. The definition of PDD requires both
in order to technically satisfy invariance (that two isometric sets have equal PDDs). But,
Earth mover’s distance does not depend on row order, so lexsort=False makes no
difference to comparisons. Setting collapse=False will also not change Earth mover’s
distances, but comparisons may take longer.

Sometimes it’s useful to know which rows of the PDD came from which motif points in the input.
Setting return_row_groups=True makes the function return a tuple (pdd, groups), where
groups[i] contains the indices of the point(s) corresponding to pdd[i]. Note that these
indices are for the asymmetric unit, whose indices in periodic_set.motif are
accessible through periodic_set.asymmetric_unit if it exists.

Comparison

The Earth mover’s distance [https://en.wikipedia.org/wiki/Earth_mover%27s_distance] is
the appropriate metric to compare PDDs. The amd.compare module contains functions
for these comparisons.

amd.PDD_pdist() and amd.PDD_cdist() are like SciPy’s functions
pdist and cdist. pdist takes one set and compares all elements pairwise,
whereas cdist takes two sets and compares elements in one with the other.
cdist returns a 2D distance matrix, but pdist returns a condensed distance matrix
(see SciPy’s pdist function [https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.pdist.html]).

compare crystals in file1.cif with those in file2.cif by PDD, k=100
pdds1 = [amd.PDD(crystal, 100) for crystal in amd.CifReader('file1.cif')]
pdds2 = [amd.PDD(crystal, 100) for crystal in amd.CifReader('file2.cif')]
distance_matrix = amd.PDD_cdist(pdds1, pdds2)

compare everything in file1.cif with each other
condensed_dm = amd.PDD_pdist(pdds1)

You can compare one PDD with another with amd.EMD():

compare DEBXIT01 and DEBXIT02 by PDD, k=100
pdds = [amd.PDD(crystal, 100) for crystal in amd.CSDReader(['DEBXIT01', 'DEBXIT02'])]
distance = amd.EMD(pdds[0], pdds[1])

amd.EMD(), amd.PDD_pdist() and amd.PDD_cdist() all accept
an optional argument metric, which can be anything accepted by SciPy’s pdist/cdist functions [https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.pdist.html].
The metric used to compare PDDs is always Earth mover’s distance, but this still requires another metric
between the rows of PDDs (so technically there’s a different Earth mover’s distance for each choice of metric).

Comparison options and multiprocessing

amd.PDD_pdist() and amd.PDD_cdist() share the following optional arguments:

	metric (default chebyshev) chooses the metric used to compare PDD rows. See SciPy’s cdist/pdist [https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.pdist.html] for a list of accepted metrics.

	n_jobs (new in 1.2.3, default None) is the number of cores to use for multiprocessing (passed to joblib.Parallel [https://joblib.readthedocs.io/en/latest/generated/joblib.Parallel.html#joblib.Parallel]). Pass -1 to use the maximum.

	verbose (changed in 1.2.3, default 0) controls the verbosity level, increasing with larger numbers. This is passed to joblib.Parallel [https://joblib.readthedocs.io/en/latest/generated/joblib.Parallel.html#joblib.Parallel], see its documentation for details.

amd.calculate module

amd.compare module

amd.io module

amd.periodicset module

amd.utils module

Index

Miscellaneous

Fingerprints of finite point sets

AMDs and PDDs also work for finite point sets. amd.AMD_finite() and
amd.PDD_finite() accept a NumPy array containing the points and return the AMD/PDD.
Unlike amd.AMD() and amd.PDD() no integer k is passed; instead the distances to all
neighbours are found (number of columns = no of points - 1).

Compare AMDs of trapezium and kite shaped finite point sets
trapezium = np.array([[0,0],[1,1],[3,1],[4,0]])
kite = np.array([[0,0],[1,1],[1,-1],[4,0]])

trap_amd = amd.AMD_finite(trapezium)
kite_amd = amd.AMD_finite(kite)

amd_dist = np.amax(np.abs(trap_amd - kite_amd))

Reconstruction of a periodic set from its PDD

It is possible to reconstruct a periodic set up to isometry from its PDD if the periodic set
satisfies certain conditions (a ‘general position’) and the PDD has enough columns. This is
implemented via the functions amd.PDD_reconstructable(), which returns the PDD
of a periodic set with enough columns, and amd.reconstruct.reconstruct() which returns
the motif given the PDD and unit cell. Reconstruction is not optimised and very slow for
most real crystals, it’s also not well tested and may not work for some crystals.

 _images/build.png
 build build passed passed

_static/file.png

nav.xhtml

 Table of Contents

 		
 average-minimum-distance: geometry based crystal descriptors

_static/minus.png

_static/plus.png

